Parametric Analyses of Multispan Viscoelastic Shear Deformable Beams Under Excitation of a Moving Mass

نویسندگان

  • Keivan Kiani
  • Ali Nikkhoo
  • Bahman Mehri
چکیده

This paper presents a numerical parametric study on design parameters of multispan viscoelastic shear deformable beams subjected to a moving mass via generalized moving least squares method (GMLSM). For utilizing Lagrange’s equations, the unknown parameters of the problem are stated in terms of GMLSM shape functions and the generalized Newmarkscheme is applied for solving the discrete equations of motion in time domain. The effects of moving mass weight and velocity, material relaxation rate, slenderness, and span number of the beam on the design parameters and possibility of mass separation from the base beam are scrutinized in some detail. The results reveal that for low values of beam slenderness, the Euler–Bernoulli beam theory or even Timoshenko beam theory could not predict the real dynamic behavior of the multispan viscoelastic beam properly. Moreover, higher beam span number would result in higher inertial effects as well as design parameters values. Also, more distinction has been observed between the predicted values of design parameters regarding the shear deformable beams and those of Euler–Bernoulli beams, specifically for high levels of moving mass velocity and low values of material relaxation rate. Furthermore, the possibility of mass separation from the base beam moves to a greater extent as the beam span number increases and the relaxation rate of the beam material decreases, regardless of the assumed beam theory. DOI: 10.1115/1.3147165

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method

Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange’s equation are obtained. Maximum deflection and bending momen...

متن کامل

Dynamic Response of an Axially Moving Viscoelastic Timoshenko Beam

In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...

متن کامل

Mathematical Analysis of Shearing Viscoelastic Beam Subjected to Continuous Moving Load

In this paper, the dynamic response of a viscoelastic beam subjected to a moving distributed load has been studied. The viscoelastic properties of the beam have been considered as linear standard model in shear and incompressible in bulk. The stress components have been separated to the shear and dilatation components and as a result the governing equations in viscoelastic form has been obtaine...

متن کامل

Efficient Higher-Order Shear Deformation Theories for Instability Analysis of Plates Carrying a Mass Moving on an Elliptical Path

The dynamic performance of structures under traveling loads should be exactly analyzed to have a safe and reasonable structural design. Different higher-order shear deformation theories are proposed in this paper to analyze the dynamic stability of thick elastic plates carrying a moving mass. The displacement fields of different theories are chosen based upon variations along the thickness as c...

متن کامل

Vibration Analysis of Beams Traversed by a Moving Mass

A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009